Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG.
نویسندگان
چکیده
BACKGROUND Electroencephalogram (EEG) signals are often corrupted with unintended artifacts which need to be removed for extracting meaningful clinical information from them. Typically a priori knowledge of the nature of the artifacts is needed for such purpose. Artifact contamination of EEG is even more prominent for pervasive EEG systems where the subjects are free to move and thereby introducing a wide variety of motion-related artifacts. This makes hard to get a priori knowledge about their characteristics rendering conventional artifact removal techniques often ineffective. NEW METHOD In this paper, we explore the performance of two hybrid artifact removal algorithms: Wavelet Packet Transform followed by Independent Component Analysis (WPTICA) and Wavelet Packet Transform followed by Empirical Mode Decomposition (WPTEMD) in pervasive EEG recording scenario, assuming existence of no a priori knowledge about the artifacts and compare their performance with two existing artifact removal algorithms. RESULTS Artifact cleaning performance has been measured using Root Mean Square Error (RMSE) and Artifact to Signal Ratio (ASR)-an index similar to traditional Signal to Noise Ratio (SNR), and also by observing normalized power distribution topography over the scalp. COMPARISON WITH EXISTING METHOD(S) Comparison has been made first using semi-simulated signals and then with real experimentally acquired EEG data with commercially available 19-channel pervasive EEG system Enobio corrupted by eight types of artifact. CONCLUSIONS Our explorations show that WPTEMD consistently gives best artifact cleaning performance not only in semi-simulated scenario but also in the case of real EEG data containing artifacts.
منابع مشابه
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملRemoval of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches
Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artif...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis.
Contamination of electroencephalographic (EEG) recordings with different kinds of artifacts is the main obstacle to the analysis of EEG data. Independent component analysis (ICA) is now a widely accepted tool for detection of artifacts in EEG data. One major challenge to artifact removal using ICA is the identification of the artifactual components. Although several strategies were proposed for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 267 شماره
صفحات -
تاریخ انتشار 2016